ЕДИНОЕ УРАВНЕНИЕ СОСТОЯНИЯ ДОДЕКАФТОР-2-МЕТИЛПЕНТАН-3-ОНА

Щемелёв А.П., Голубева Н.В., Самуйлов В.С., Поддубский О.Г. Белорусский государственный университет пищевых и химических технологий г. Могилев, Республика Беларусь

Додекафтор-2-метилпентан-3-он (известный под торговыми марками Novec-649 и Novec-1230) может использоваться как рабочее тело силовых установок, реализующих цикл Ренкина и как средство пожаротушения, поэтому описание его термодинамических свойств представляет не только теоретический, но и практический интерес.

Для создания справочных таблиц, диаграмм, расчетов, проектирования и оптимизации различных процессов и оборудования широко применяются уравнения состояния. Одной из наиболее оптимальных форм единого фундаментального уравнения состояния на данный момент является уравнение состояния, явно выражающее энергию Гельмгольца с плотностью и температурой в качестве независимых переменных:

$$a(\rho, T) = a^{0}(\rho, T) + a^{r}(\rho, T),$$
 (1)

где a — энергия Гельмгольца, $a^0(\rho, T)$ — энергия Гельмгольца идеального газа, $a^{\rm r}(\rho, T)$ — избыточная энергия Гельмгольца, ρ — плотность, T — температура.

Наиболее часто энергию Гельмгольца выражают в безразмерной форме:

$$\alpha(\delta, \tau) = \alpha^{0}(\delta, \tau) + \alpha^{r}(\delta, \tau), \tag{2}$$

где $\alpha = a/(RT)$ — безразмерная энергия Гельмгольца; $\alpha^0 = a^0/(RT)$ — безразмерная энергия Гельмгольца идеального газа, $\alpha^r = a^r/(RT)$ — безразмерная избыточная энергия Гельмгольца; $\delta = \rho/\rho_c$ — приведенная плотность и $\tau = T_c/T$ обратная приведенная температура, ρ_c — критическая плотность и T_c — критическая температура.

В частности, для додекафтор-2-метилпентан-3-она ранее было получено такое фундаментальное уравнение состояния удовлетворительно описывающее исходные экспериментальные данные в интервале температур 168–500 К при давлениях до 50 МПа [1] на основе относительно скудного набора исходных экспериментальных данных.

В [1] приводится уравнение, описывающее идеальногазовый вклад в энергию Гельмгольца в безразмерном виде для додекафтор-2-метилпентан-3-она:

$$a^{0} = a_{1} + a_{2}\tau + \ln\delta + (c_{0} - 1)\ln\tau + \nu_{1}\ln[1 - \exp(-u_{1}\tau/T_{c})]$$
(3)

где $c_0 = 30,8$, $v_1 = 29,8$ и $u_1 = 1940$ К. Члены a_1 и a_2 были рассчитаны, чтобы получить параметры для точки отсчета значения энтальпии 200 кДж/кг и энтропии 1 кДж/(кг·К) в состоянии насыщенной жидкости при 0 °C. В результате были получены следующие значения этих параметров: $a_1 = -30,661\,050\,3233$ и $a_2 = 6,830\,529\,6372$.

Функциональная форма остаточного вклада в энергию Гельмгольца имеет вид

$$\alpha^{r}(\delta,\tau) = \sum_{k=1}^{7} N_{k} \delta^{d_{k}} \tau^{t_{k}} + \sum_{k=8}^{10} N_{k} \delta^{d_{k}} \tau^{t_{k}} \exp(-\delta^{l_{k}}) + \sum_{k=11}^{17} N_{k} \delta^{d_{k}} \tau^{t_{k}} \exp[-\eta(\delta-\epsilon)^{2} - \beta(\tau-\gamma)^{2}], (4)$$

где N_k , d_k , t_k , l_k , η , ε , β , γ – параметры уравнения, которые были определены авторами [1] путем аппроксимации результатов собственных измерений плотности, скорости звука и давлений насыщения. Нами были получены новые значения этих коэффициентов с учетом дополнительных данных производителя Novec-649 по плотности, изобарной теплоемкости, давления насыщения, которые не использовались авторами [1]. Полученные значения коэффициентов представлены в таблице 1. В ходе аппроксимации использовались значения критических параметров: $T_c = 441.81$ K; $\rho_c = 1.92$ моль/л; $p_c = 1.869$ МПа [2] и молярная газовая постоянная R = 8.314 4621 Дж/(моль·К) [1].

Таблица 1 – Коэффициенты и показатели уравнения (4)

\overline{k}	N_k	t_k	d_k	l_k	η_k	β_k	γ_k	ϵ_k
1	0.055602286	1	4					
2	2.9503551	0.25	1					
3	-6.048523	0.793	1					
4	3.3187287	1.16	1					
5	1.44390204	0.75	2					
6	-2.79676603	1.09	2					
7	0.204978584	0.75	3					
8	2.1788002	1.3	2	1				
9	-2.079164	2.25	1	2				
10	-1.32264906	1.9	2	2				
11	-0.97024665	0.88	1		0.32	0.12	1.1	1.16
12	2.67461557	1.63	1		1.32	0.83	1.04	0.793
13	0.80450717	1.3	2		1.35	0.19	1.15	1.13
14	-1.790820443	2	2		1.48	0.95	0.9	0.527
15	0.20189487	1.15	3		0.51	0.1	0.8	1.19
16	-0.99919996	1.66	3		1.3	0.11	1.2	0.83
17	-0.0511138	1.5	1		5.15	65	1.19	0.82

Отклонения экспериментальных данных по плотности додекафтор-2-метилпентан-3-она не превышают 0.09%, по скорости звука 0.7% и по изобарной теплоемкости — 0.15% от значений, вычисленных при помощи уравнений (2)—(4) с параметрами, представленными в таблице 1. Таким образом, отклонения данных по плотности изобарной теплоемкости не превышают неопределенности экспериментальных данных. Отклонения экспериментальных данных по скорости звука также в основном не превышают их неопределенности за исключением единственной экспериментальной точки.

Список использованных источников

- 1. Thermodynamic Properties of 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoromethyl)-3-pentanone: Vapor Pressure, (p, ρ , T) Behavior, and Speed of Sound Measurements, and an Equation of State / M.O. McLinden [et. al] // J. Chem. Eng. Data. 2015. Vol. 60, No. 12. P. 3646–3659.
- 2. Mohr, P.J., CODATA recommended values of the fundamental physical constants: 2010 / P.J. Mohr, B.N. Taylor, D.B. Newell // Rev. Mod. Phys. 2012. Vol. 84, No. 4. P. 1527–1605.